Abstract

Learning to solve problems is central to artificial and living intelligent systems. Although physical and chemical systems mimicking neural connectivity have been shown to solve complex problems, no living system with a synthetic genetic construction has ever been reported to learn complex algorithms such as playing board games — a classic benchmark for artificial intelligence. Engineering a synthetic genetic system in living cells able to learn and play even the simplest board games, such as tic-tac-toe, has remained elusive because it requires not only a set of gene circuits implementing the needed decision algorithms but also an adaptive memory system that can predictably adjust their strength through learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.