Abstract

The chemolithoautotroph Acidithiobacillus ferrooxidans has been proposed as a potential electrofuel synthetic platform, and its growth medium is engineered to increase its conductivity and energy density, thereby improving viability of the process. The ion V3+ is used as an indirect electron supplier together with Fe2+ to grow A. ferrooxidans to increase the energy density of the medium, overcoming the Fe3+ solubility limit. A medium containing 10 mM Fe2+ with 60 mM V3+ was able to support cell growth to a final cell concentration very similar to medium of 70 mM Fe2+. Integration of the biological process with an electrochemical reactor requires, for economical operation, a medium with high ionic conductivity. This is achieved by the addition of salt, and Mg2+ was found to be least toxic to the bacterium. A concentration of 500 mM Mg2+ is optimal considering constraints on bacterial growth and electrochemistry. © 2014 American Institute of Chemical Engineers AIChE J 60: 4008–4013, 2014

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.