Abstract

Sensitive and accurate analysis of pyrophosphate (PPi) is of great importance for preventing health hazard in environment. Nevertheless, most of sensors focus on sensitivity and selectivity, but practicality is also a significant quota. How to reconciling sensitivity, selectivity and practicability in one single sensor is desirable but remains challenging. Here, we created a novel metal-carbon nanozyme V2O5@C with two-dimensional (2D) morphology and high yet exclusive peroxidase (POD)-like activity via a glucose and NH4NO4-co-directed avenue, and further showed its application in constructing a portable and disposable paper-based analytical chip (PA-chip) for rapid, visual and onsite analysis of PPi. PPi etched V2O5 to prevent the decomposition of H2O2 into ·OH, resulting in weakened POD-like activity. In comparison with PPi deficiency, colorless TMB couldn't be oxidized into oxidized TMB with a dropped absorption at 652 nm. Therefore, obviously shallowed blue color on PA-chip surface was recorded, and demonstrated a negative relationship with PPi dosage, enabling rapid and visual detection of PPi with a limit of detection of 2.6 nM. This study demonstrated the burgeoning applications of nanozymes with POD-like activity in construction of PA-chips for PPi and will quicken the advancement of practical sensors, guaranteeing environmental safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.