Abstract
To increase the energy efficiency of buildings and lower carbon emissions, heat losses through exterior walls could be considerably decreased by using high-performance thermal insulation materials with superlow thermal conductivities or superhigh heat capacities. A superinsulating layer would result in a highly nonuniform distribution of thermal resistance and capacitance within the exterior wall. An interesting problem concerns how to engineer the nonuniform thermal distribution for given total resistances and capacitances to improve energy efficiency. This paper proposes using a thermal nonuniformity factor to quantitatively characterize the nonuniform distribution of thermal resistance and capacitance in an exterior wall built with superthermal aerogel insulating panels and given total resistance and capacitance values. Various thermal nonuniformity factors for several insulation modes were investigated by calculating the relevant transmission loads through the walls. The effect of the thermal nonuniformity factor on the wall transmission load was explored to improve the energy efficiency of a building. The results indicated that the wall heat flux could be greatly decreased by engineering walls with a high nonuniformity factor. For instance, engineering a wall in a sandwich mode with thermal nonuniformity factor of 0.97 could decrease the wall heat flux by ∼35% compared to a uniform wall. These findings on engineering walls based on thermal nonuniformity factors to decrease the wall heat flux could be a useful reference for superinsulated buildings and for further improving thermal insulating performance and building energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.