Abstract

Peroxynitrite (ONOO-) is an important reactive oxygen/nitrogen species that participates in a range of physiological and pathological processes by modulating ion flux through biological channels. Inspired by a ONOO--regulated K+ channel in vivo, herein, we describe the construction of a smart ONOO--driven nanosensor using a spirocyclic ring open/close reaction approach. The prepared nanosensor possessed a prominent ONOO- selectivity and sensitivity and rapid response (∼90 s) owing to the specific reaction between ONOO- and ligands on the nanosensor surface with a high ion rectification ratio (∼10) and ion gating ratio (∼4). Moreover, this nanosensor system also exhibits excellent stability and recyclability. Thus, these results will provide a new direction for the design of nanochannel-based sensors for future practical and biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.