Abstract

AbstractPoly(N‐isopropylacrylamide) (pNIPAAm), a well‐studied, biologically inert polymer that undergoes a sharp aqueous thermal transition at 32 °C, has been a subject of widespread interest for possible biological applications. A major hindrance to its successful application is due to the difficulty of maintaining a sharp transition when the polymer is modified for a physiological transition temperature, especially in isotonic solutions. Current copolymer blends raise the transition temperature but also make the transition significantly broader. We have combined the use of reversible addition‐fragmentation chain transfer (RAFT) polymerization with tacticity control to synthesize well‐defined pNIPAAm that demonstrates sharp transitions under physiological conditions. By selecting a RAFT agent with appropriate end groups, controlling molecular weight, and increasing the racemo diad content, we were able to increase the thermal transition temperature of pure pNIPAAm to a sharp transition at 37.6 °C under isotonic conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call