Abstract

Biofilms developed by microorganisms cause an extremely severe clinical problem that leads to drug failure. Bioactive polymeric hydrogels display potential for controlling the formation of microorganism-based biofilms, but their rapid biodegradability in these biofilm sites is still a major challenge. To overcome this, chitosan (CS), a natural functional biomaterial, has been used because of its effective penetrability in the cell wall of microorganisms; however, its fast biodegradability has restricted its further use. Hence, in this study, to improve the stability of CS and increase its penetration retention inside a biofilm, grafted CS was prepared and then crosslinked with sodium alginate (SA) to synthesize CS-poly(MA-co-AA)SA hydrogel via a free radical grafting method, therefore enhancing its antibiofilm efficiency against biofilms. The prepared hydrogel demonstrated excellent effectiveness against (≥90 % inhibition) biofilms of Candida albicans. Additionally, in vitro and in vivo safety assays established that the prepared hydrogel can be used in a biofilm microenvironment and might reduce drug resistance burden owing to its long-term antibiofilm effect and improved CS stability at the biofilm site. Furthermore, in vitro wound healing outcomes of hydrogel indicated its potential application for chronic wound treatment. This research opens a new advanced strategy for biofilm-associated infection treatment, including wound treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call