Abstract

Fluoride anion pollution is one of the main problems that needs to be addressed in contaminated water. Herein, we have developed a novel sensing platform using a pyrene boronic acid and carbon dots (CDs) for the selective detection and removal of fluoride (F−) ion at environmentally relevant levels. The probe consists of pyrene-boronic acid (PyB) moieties immobilized on to the surface of water-soluble CDs. The pyrene-boronic acid-based CDs (CDs-PyB) result in a sensor whose response is linear for F− concentrations over a range from 0 to 200 µM (R2 = 0.996) with a detection limit of 5.9 × 10−5 M and display high selectivity for F− over other anions. In addition, an amino-modified cellulose membrane containing CDs-PyB has been prepared for practical sensing and removal of F−. The cellulose membrane-based sensor shows great potential for the detection of F− with a high sensitivity, and excellent F− adsorption and removal efficiency of 90.2%. Moreover, an MTT assay for the membrane demonstrates high cell proliferation ca 400% after 5 days culture, indicating excellent cytocompatibility. Our approach offers a promising direction for the construction of other sensors by simply swapping the current probe with suitable replacements for a variety of relevant applications using biocompatible and abundant naturally based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.