Abstract

Shewanella oneidensis MR-1 is a model organism for understanding extracellular electron transport, in which cells transfer intracellular electrons to an extracellular terminal electron acceptor such as insoluble minerals or poised electrodes. Biotechnological applications exploiting the respiratory capabilities of Shewanella species have led to their proposed use in wastewater treatment, bioremediation, and remote sensors. Transcriptional regulation tools can be used to rationally engineer S.oneidensis, optimizing performance in biotechnological applications, introducing new capabilities, or investigating physiology. Engineered gene expression in S.oneidensis has primarily involved the use of foreign regulatory systems from Escherichia coli. Here we characterize a native S.oneidensis pathway that can be used to induce gene expression with trimethylamine N-oxide, then engineer strains in which extracellular electron transfer is controlled by this compound. The ability to induce this pathway was assessed by measuring iron reduction over time and by analyzing anodic current produced by cells grown in bioreactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.