Abstract
Protein engineering experiments have recently yielded hyperstable variants of the thermolysin-like protease from Bacillus stearothermophilus (TLP-ste). These variants contain mutations suggested by comparison of TLP-ste with its more thermostable counterpart thermolysin, as well as rationally designed mutations. The key to the successful stabilization strategy was the identification of a “weak” region that is involved in early unfolding events (“unfolding region”). Mutations in this region had large effects on stability, whereas mutations in other parts of the protein generally had minor effects. The mutational strategies that were used as well as characteristics of the engineered hyperstable biocatalysts are reviewed below.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.