Abstract

Poly(ethylene oxide) (PEO)-based polymer electrolytes have been widely studied as a result of their flexibility, excellent interface contact, and high compatibility with a lithium metal anode. Owing to the poor oxidation resistance of ethers, however, the PEO-based electrolytes are only compatible with low-voltage cathodes, which limits their energy density. Here, a high-voltage stable solid-state interface layer based on polyfluoroalkyl acrylate was constructed via in situ solvent-free bulk electropolymerization between the LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode and the PEO-based solid polymer electrolyte. The electrochemical oxidation window of the as-synthesized electrolyte was therefore expanded from 4.3 V for the PEO-based matrix electrolyte to 5.1 V, and the ionic conductivity was improved to 1.02 × 10-4 S cm-1 at ambient temperature and 4.72 × 10-4 S cm-1 at 60 °C as a result of the improved Li+ migration. This fabrication process for the interface buffer layer by an in situ electrochemical process provides an innovative and universal interface engineering strategy for high-performance and high-energy-density solid-state batteries, which has not been explicitly discussed before, paving the way toward the large-scale production of the next generation of solid-state lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.