Abstract
T cells expressing tumor-specific T cell receptors are promising cancer therapeutic agents, but safety control switches are needed to manage potential side effects arising from overactivity. Here, we present the first dual small molecule-gated ZAP70 signaling switch for the regulation of T cell activity. We show that when an analogue-sensitive ZAP70 allele is fused to the engineered ligand binding domain of the estrogen receptor, ERT2, its activity can be upregulated to an extent by a metabolite of an FDA-approved tamoxifen, 4-hydroxy-tamoxifen, and downregulated by an ATP analogue, 3-MB-PP1. The strength of early T cell signaling can also be modulated by varying the concentrations of activator and inhibitor, and the switch exhibits temporal control on the time scale of minutes. Interestingly, the switch has the ability to control CD69 and calcium levels in T cells but has limited capabilities in the regulation of downstream cytokine release, suggesting further investigation is needed before it can be implemented in adoptive T cell therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.