Abstract

Light-dependent reduction of cystine disulfide bonds results in activation of several of the enzymes of photosynthetic carbon metabolism within the chloroplast. We have modeled the tertiary structure of four of these light-activated enzymes, namely NADP-linked malate dehydrogenase, glyceraldehyde-3-P dehydrogenase, fructosebisphosphatase, and sedoheptulosebisphosphatase, and identified cysteines in each enzyme that be expected to form inactivating disulfide bonds (Li, D., F. J. Stevens, M. Schiffer, and L. E. Anderson, 1994. Biophys. J. 67:29-35). We have now converted two residues in the Escherichia coli NAD-linked malate dehydrogenase to cysteines and produced a redox-sensitive enzyme. Oxidation of domain-locking cysteine residues in the mutant enzyme clearly mimics dark inactivation of the redox-sensitive chloroplast dehydrogenase. This result is completely consistent with our proposed mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.