Abstract

Despite the high energy of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathode, it still suffers serious decay due to the continuous solvents decomposition and unstable cathode electrolyte interphase (CEI) layers, especially under high temperatures. The intense exothermic reaction between delithiated NCM811 and flammable electrolyte, on the other hand, pushes the batteries to their safety limit. Herein, these two issues are tackled via engineering the electrolytes, that is, utilizing salts with higher HOMO levels and nonflammable solvents with lower HOMO levels, to reduce the massive decomposition of solvents and improve battery safety under elevated temperatures. Consequently, a thin and boron-rich CEI is generated, which effectively inhibited the side reactions, thus improving the cycling stability and safety. Deviated from the highly concentrated electrolytes which heavily relies on the usage of massive salts, the electrolyte recipe can introduce a robust inorganic-rich CEI but use much less salt (i.e., dilute electrolyte), and thus, offer an encouraging alternative toward practical applications. As such, the NCM811 cathode exhibits a high-capacity retention of 81.2% after 950 cycles at 25°C and 75% after 300 cycles at 55°C. This work provides a universal electrolyte design strategy for designing stable and safe high-temperature electrolytes for the NCM811 cathode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call