Abstract
Peptide coassembly, wherein at least two different peptides interact to form multicomponent nanostructures, is an attractive approach for generating functional biomaterials. Current efforts seek to design pairs of peptides, A and B, that form nanostructures (e.g., β-sheets with ABABA-type β-strand patterning) while resisting self-assembly (e.g., AAAAA-type or BBBBB-type β-sheets). To confer coassembly behavior, most existing designs have been based on highly charged variants of known self-assembling peptides; like-charge repulsion limits self-assembly while opposite-charge attraction promotes coassembly. Recent analyses using solid-state NMR and coarse-grained simulations reveal that preconceived notions of structure and molecular organization are not always correct. This perspective highlights recent advances and key challenges to understanding and controlling peptide coassembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.