Abstract
The growth in world population, climate change, and resource scarcity necessitate a sustainable increase in crop productivity. Photosynthesis in major crops is limited by the inefficiency of the key CO2-fixing enzyme Rubisco, owing to its low carboxylation rate and poor ability to discriminate between CO2 and O2. In cyanobacteria and proteobacteria, carboxysomes function as the central CO2-fixing organelles that elevate CO2 levels around encapsulated Rubisco to enhance carboxylation. There is growing interest in engineering carboxysomes into crop chloroplasts as a potential route for improving photosynthesis and crop yields. Here, we generate morphologically correct carboxysomes in tobacco chloroplasts by transforming nine carboxysome genetic components derived from a proteobacterium. The chloroplast-expressed carboxysomes display a structural and functional integrity comparable to native carboxysomes and support autotrophic growth and photosynthesis of the transplastomic plants at elevated CO2. Our study provides proof-of-concept for a route to engineering fully functional CO2-fixing modules and entire CO2-concentrating mechanisms into chloroplasts to improve crop photosynthesis and productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.