Abstract

Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) are fiber-reinforced cement-based materials with tensile strain-hardening and multiple-cracking characteristics. In this study, ultra-high-strength ECC (UHS-ECC) with a compressive strength over 210 MPa was successfully developed for the first time. The developed UHS-ECC exhibited excellent tensile strain capacity (5.2%), and fine crack width (72 μm). These characteristics were realized by combined use of polyethylene and steel fibers in a dense matrix. Two new material indices (f'cftεt index and f'cftεt/w index) were proposed to assess the overall performance of UHS-ECC. Compared with existing high-strength ECC, the developed UHS-ECC records the highest compressive strength and the best overall performance. The findings of this study provide useful knowledge for future design and applications of UHS-ECC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call