Abstract

Williams-Beuren syndrome (WBS) and supravalvular aortic stenosis (SVAS) are genetic syndromes marked by the propensity to develop severe vascular stenoses. Vascular lesions in both syndromes are caused by haploinsufficiency of the elastin gene. We used these distinct genetic syndromes as models to evaluate the feasibility of using engineered zinc-finger protein transcription factors (ZFPs) to achieve compensatory expression of haploinsufficient genes by inducing augmented expression from the remaining wild-type allele. For complex genes with multiple splice variants, this approach could have distinct advantages over cDNA-based gene replacement strategies. Targeting the elastin gene, we show that transcriptional activation by engineered ZFPs can induce compensatory expression from the wild-type allele in the setting of classic WBS and SVAS genetic mutations, increase elastin expression in wild-type cells, induce expression of the major elastin splice variants, and recapitulate their natural stoichiometry. Further, we establish that transcriptional activation of the mutant allele in SVAS does not overcome nonsense-mediated decay, and thus ZFP-mediated transcriptional activation is not likely to induce production of a mutant protein, a crucial consideration. Finally, we show in bioengineered blood vessels that ZFP-mediated induction of elastin expression is capable of stimulating functional elastogenesis. Haploinsufficiency is a common mechanism of genetic disease. These findings have significant implications for WBS and SVAS, and establish that haploinsufficiency can be overcome by targeted transcriptional activation without inducing protein expression from the mutant allele.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.