Abstract

Wavelength-scale objects usually diffuse incident light into all directions, thereby resulting in a low transmittance accompanied by a thick haze. The degradation of visibility remains a more challenging problem for metal nanostructures due to the excitation of localized surface plasmon resonances, which impedes their practical use in display applications. Here, we report a broadband, polarization- and angle-independent near-unity transmittance from a network of submicron Ag wires via the suppression of backward scattering. Electromagnetic simulations on a single Ag wire predicted that a conformal, dielectric shell suppresses backward scattering while only boosting the zeroth-order forward scattering. A facile oxidation process on electrospun Ag wires produced Ag/Ag2O core/shell wires randomly dispersed on a glass substrate. Measurements of spatially (1.5 × 1.5 cm2) and spectrally (λ = 480–880 nm) averaged transmittance revealed that Ag/Ag2O wires (with an Ag filling ratio of 3.4%) recorded a transmittance of approximately 99%, relative to a bare glass substrate. A dark-field microscope equipped with a spectrometer quantified the level of the suppressed backward scattering in Ag/Ag2O wires. The scattering engineering technique presented herein will be essential to developing metal particle or wire embedded dielectric films that act as high-transmittance specular surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.