Abstract

In this study, we present a nanoengineered therapeutic-releasing system based on aluminum wires featuring nanoporous anodic alumina layers and chitosan coatings. Nanoporous anodic alumina layers are produced on the surface of aluminum wires by electrochemical anodization. These nanoporous layers with precisely engineered nanopore geometry are used as nanocontainers for bovine serum albumin molecules labeled with fluorescein isothiocyanate (BSA-FITC), which is selected as a model drug. The surface of these therapeutic-releasing implants is coated with a biocompatible and biodegradable polymer, chitosan, in order to achieve a sustained release of protein over extended periods of time. The performance of this therapeutic-releasing device is systematically assessed through a series of experiments under static and dynamic flow conditions. In these experiments, the effect of such parameters as the number of layers of chitosan coating and the temperature and pH of the eluting medium is established. The obtained results reveal that the proposed therapeutic-releasing system based on nanoporous aluminum wires can be engineered with sustained release performance for up to 6.5 weeks, which is a critical factor for medical treatments using sensitive therapeutics such as proteins and genes when a localized delivery is desired.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.