Abstract
Emerging pharmaceutical pollutants pose a threat to both human and environmental health. The removal and monitoring of such pollutants necessitate the use of practical on-site monitoring devices; however, the designs of such devices are underdeveloped. This study involves the fabrication of a low-cost sensor based on barium-incorporated copper oxide (Ba-CuO) for the on-site monitoring of the cytotoxic drug methotrexate (MTRX) in water and sediment samples. The tenorite structure of CuO was slightly enriched with Ba ions at the td sites, distorting the tetrahedron and enhancing its electrochemical properties. Ba-CuO was obtained from Cu(NO3)2 and Ba(OH)2 by a ligand exchange protocol and was characterized using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray analysis. In addition, the Ba-CuO sensor was tested under various conditions, and it could detect MTRX at concentrations as low as 0.4 nM, with a high sensitivity of 1.3567 µA µM−1 cm−2. On-site monitoring yielded recoveries of greater than 93 % from spiked samples, thus exhibiting excellent reproducibility and stability. Therefore, the developed method is practical and has no matrix effect on the MTRX sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.