Abstract

Multifunctional and frequency-agile devices are promising components that satisfy multiple standards of modern wireless communication system. This paper provides a unique method to develop tunable RF components based on engineered smart substrate where the smart substrate contain patterned Permalloy (Py) thin film on high-resistivity silicon. The permeability of Py can be adjusted by changing the DC current, thus allowing tunable RF circuits and components. Single or multi-layer patterns can be developed. To demonstrate tunability of the smart substrate, a frequency reconfigurable patch antenna was fabricated on Liquid Crystal Polymer substrate and bonded to the proposed smart substrate. The patch antenna was tested, which revealed that the center frequency of operation could be tuned from 2.38 GHz to 2.43 GHz by changing the DC current from 0 mA to 500 mA. Similarly, a transmission line based phase shifter was also fabricated on another smart substrate, which showed that the phase shifter could provide continuous 90° phase shift from 2.35 GHz to 2.15 GHz under different DC current bias conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call