Abstract

Non-green plastids are desirable for the expression of recombinant proteins in edible plant parts to enhance the nutritional value of tubers or fruits, or to deliver pharmaceuticals. However, plastid transgenes are expressed at extremely low levels in the amyloplasts of storage organs such as tubers1-3. Here, we report a regulatory system comprising a variant of the maize RNA-binding protein PPR10 and a cognate binding site upstream of a plastid transgene that encodes green fluorescent protein (GFP). The binding site is not recognized by the resident potato PPR10 protein, restricting GFP protein accumulation to low levels in leaves. When the PPR10 variant is expressed from the tuber-specific patatin promoter, GFP accumulates up to 1.3% of the total soluble protein, a 60-fold increase compared with previous studies2 (0.02%). This regulatory system enables an increase in transgene expression in non-photosynthetic plastids without interfering with chloroplast gene expression in leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call