Abstract

Despite recent advancements, mortality due to coronary heart disease (CHD) remains high. Recently, the use of tissue-engineered grafts and scaffolds has emerged as a candidate for supporting the myocardium after an ischemic event. Resveratrol is a naturally occurring plant-based non-flavonoid polyphenolic compound found in many natural foods, including grapes and red wine. We embedded resveratrol in a polycaprolactone (PCL) scaffold and evaluated the cardio-therapeutic effects in a murine model of myocardial infarction (MI), with animals being grouped into Sham (S), Myocardial Infarction (MI), MI + PCL, and MI + PCL-Resveratrol (MI + PCL-R). After 4 and 8 weeks, echocardiography was performed to assess ejection fraction (EF) and fractional shortening (FS), which was followed by immunohistochemistry and immunofluorescence analysis at 8 weeks. The MI + PCL-R group showed a significant improvement in EF and FS compared with the MI + PCL group at 4 and 8-weeks post-surgery. PCL-R scaffolds treated hearts revealed decreased inflammatory cell infiltration, improved collagen extracellular matrix (ECM) secretion and blood vessel network formation following MI. The immunofluorescence analysis revealed resveratrol-loaded scaffolds promote increased expression of cTnT, Cx-43, Trx-1, and VEGF proteins. This study reports resveratrol-mediated rescue of ischemic myocardium when delivered through a biodegradable polymeric scaffold system after MI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call