Abstract

Metal sulfide nanoparticles are synthesized for their biomedical applications, including cancer drug targeting. This paper reports a novel nanocomposite made of praseodymium sulfide nanoparticles and poly-cyclodextrin. The praseodymium sulfide nanoparticles were synthesized hydrothermal, autoclaving the nitrate precursors at 150 °C for 18 hours. The material is characterized using XRD and shows an orthorhombic crystal system with high crystallinity. The size and morphology of the nanomaterial were optimized. The material shows a rod-shaped morphology, as seen in the TEM image, with 150 ± 3 nm length and 25 ± 5 nm width. Particle size analysis supports this size range. The colloidal particles were stable in the aqueous medium without precipitation at neutral pH. The elements in the material in the polymer-coated form and their electronic states are studied by X-ray photoelectron spectroscopy. Thermogravimetry confirms that the material contains about 18.5% of the weight of the polymer. The material has an observable magnetic property at room temperature due to the praseodymium element. The UV–vis–NIR absorption spectrum of the material shows a long absorption range that extends to 1200 nm. The drug 5-fluorouracil is encapsulated in the nanoparticles through host: guest association, and its release profile is analyzed. The release is modulated at a slightly acidic pH, indicating the pH-tunability. The nanoparticles and 5-fluorouracil were taken in the w/w ratio of 2:1 (2/1 mg in 1 mL of deionized water). Further, the in vitro anticancer activity of the drug-encapsulated material is screened on breast cancer and non-cancerous cell lines. The IC50 values are reported, and the advantageous properties of the material as drug carriers are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call