Abstract

A suitable biomaterial for tissue engineering should be able to mimic the endogenous extracellular matrix by presenting biochemical and biophysical cues. Novel hydrogel-based materials seek to meet the criteria of cytocompatibility, biodegradability, printability, and crosslinkability under mild conditions. However, a majority of existing hydrogels lack cell-interactive motifs, which are crucial to modulate cellular responses. The incorporation of the plant virus PVX to the hydrogel could improve functions like integrin-binding and mineralization due to peptide-presentation on the particle surface. The tailored surface of genetically engineered PVX forms fibril-like nanostructures which enables enhanced focal adhesion-dependent cell adhesion and matrix mineralization and offers great potential for the development of new hydrogel compositions for bone tissue substitutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.