Abstract

This paper covers the optimization of methane volumetric storage capacity by controlling the sub-nanometre (<1 nm) and supra-nanometre (1-5 nm) pore volumes. Nanospace engineering of KOH activated carbon generates an ideal structure for methane storage in which gas molecules are adsorbed as a high-density fluid by strong van der Waals forces into pores that are a few molecules in diameter. High specific surface areas, porosities, sub-nanometre (<1 nm) and supra-nanometre (1-5 nm) pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. The formation of tuneable sub-nanometre and supra-nanometre pores is validated by sub-critical nitrogen adsorption. Aberration-corrected scanning transmission electron microscopy data show the atomic structure of high-surface-area activated carbon (2600 m2/g). While high surface area and high porosity are optimal for gravimetric methane storage, the re...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call