Abstract

3D nanostructured Prussian blue analogues (PBA) are promising candidates in the family of metal-organic frameworks (MOFs) for applications as bifunctional electrocatalysts due to their open framework structures, high specific surface areas and variable metal active sites. Due to their facile synthesis approach and unique framework structures, these nanostructures can be easily transformed into different structures/materials having different compositions. Herein, we have synthesized Ni–Fe Prussian blue analogue nanocubes (NiFe-PBA-NC) via a simple precipitation method and converted them into Ni–Fe Prussian blue analogue nanocages (NiFe-PBA-NG) and porous mixed metal oxide (NiFe-oxide). For the conversion of nanocubes to nanocages a very controlled etching process is carried out by using an ammonia solution while for the formation of porous mixed metal oxide, nanocubes are annealed in the presence of air. The transformation of nanocubes to nanocages and mixed metal-oxide is thoroughly characterized by various spectroscopic and microscopic techniques and employed as a bifunctional electrocatalyst for oxygen evolution and oxygen reduction reactions (OER and ORR, respectively) in which NiFe-oxide proved to be the best bifunctional catalyst. This thorough and systematic study reveals the fundamentals of the structure-property co-relation towards engineering novel bifunctional electrocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call