Abstract
In recent years, the production of nanoparticles (NPs) and exploration of their unusual properties have attracted the attention of physicists, chemists, biologists and engineers. Interest in NPs arises from the fact that the mechanical, chemical, electrical, optical, magnetic, electro-optical and magneto-optical properties of these particles are different from their bulk properties and depend on the particle size. There are numerous areas where nanoparticulate systems are of scientific and technological interest, particularly in biomedicine where the emergence of NPs with specific properties (e.g. magnetic and fluorescence) for contrast agents can lead to advancing the understanding of biological processes at the biomolecular level. This review will cover a full description of the physics of various imaging methods, including MRI, optical techniques, X-rays and CT. In addition, the effect of NPs on the improvement of the mentioned non-invasive imaging methods will be discussed together with their advantages and disadvantages. A detailed discussion will also be provided on the recent advances in imaging agents, such as fluorescent dye-doped silica NPs, quantum dots, gold- and engineered polymeric-NPs, superparamagnetic iron oxide NPs (SPIONs), and multimodal NPs (i.e. nanomaterials that are active in both MRI and optical methods), which are employed to overcome many of the limitations of conventional contrast agents (e.g. gadolinium).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nanoscale
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.