Abstract

AbstractAs a powerful tool, nanoenzyme electrocatalyst broadens the ways to explore bioinspired solutions to the world's energy and environmental concerns. Efforts of fashioning novel nanoenzymes for effective electrode functionalization is generating innovative viable catalysts with high catalytic activity, low cost, high stability and versatility, and ease of production. High chemo‐selectivity and broad functional group tolerance of nanoenzyme with an intrinsic enzyme like activity make them an excellent environmental tool. The catalytic activities and kinetics of nanoenzymes that benefit the development of nanoenzyme‐based energy and environmental technologies by effectual electrode functionalization are discussed in this article. Further, a deep‐insight on recent developments in the state‐of‐art of nanoenzymes either in terms of electrocatalytic redox reactions (viz. oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction and hydrogen evolution reaction) or environmental remediation /treatment of wastewater/or monitoring of a variety of pollutants. The complex interdependence of the physicochemical properties and catalytic characteristics of nanoenzymes are discussed along with the exciting opportunities presented by nanomaterial‐based core structures adorned with nanoparticle active‐sites shell for enhanced catalytic processes. Thus, such modular architecture with multi‐enzymatic potential introduces an immense scope of making its economical scale‐up for multielectron‐fuel or product recovery and multi‐pollutant or pesticide remediation as reality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.