Abstract

Targeted theranostics heavily rely on metal isotopes conjugated to antibodies. Single-domain antibodies, known as nanobodies, are much smaller in size without compromising specificity and affinity. The conventional way of conjugating metals to nanobodies involves non-specific modification of amino acid residues with bifunctional chelating agents. We demonstrate that mutagenesis of a single residue in a nanobody creates a triple cysteine motif that selectively binds bismuth which is, for example, used in targeted alpha therapy. Two mutations create a quadruple cysteine mutant specific for gallium and indium used in positron emission tomography and single-photon emission computed tomography, respectively. Labelling is quantitative within a few minutes. The metal nanobodies maintain structural integrity and stability over weeks, resist competition from endogenous metal binders like glutathione, and retain functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.