Abstract

The degradation of surface water quality in the US is mostly contributed by nonpoint-source pollution, in which stormwater runoff plays a major role. Stormwater runoff pollution is difficult to control due to its diffuse and stochastic loading. In this study, multifunctional AlMg/GO engineered sand synthesized via a simple method was used to address four major categories of runoff contaminants, namely nutrient (phosphate), metal (zinc), organic contaminant (caffeine), and pathogen (E. coli), simultaneously. For chemical contaminants (phosphate, zinc, and caffeine), Freundlich and Thomas models can successfully describe the batch isotherms and breakthrough curves of column flow-through experiments, respectively. Better E. coli retention capacity and antibacterial activity of the engineered sand than that of the raw sand was demonstrated in E. coli retention and revitalization experiments. The engineered sand also showed good performance in actual surface runoff. Based on the results of the column flow-through experiments and the literature-reported typical field conditions and design criteria (e.g. 50 m3 engineered sand for 5000 m2 catchment; dissolved concentrations in the runoff: phosphate 0.2 mg/L, zinc 0.3 mg/L, and caffeine 0.0002 mg/L), a preliminary operational lifetime estimation was conducted, which indicated that the engineered sand can maintain its effectiveness for 90% removal of the dissolved phosphate, zinc, and caffeine from stormwater runoff for 81, 15, and >100 years, respectively. The engineered multifunctional sand proved to be a promising solution to future stormwater runoff management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call