Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies due to its rapid proliferation, frequent acquisition of chemoresistance, and widespread metastasis within the peritoneal cavity. Intraperitoneal (IP) chemotherapy has demonstrated significant anti-cancer potential but its broad clinical application is hindered by several drug delivery limitations. Herein, we engineer paclitaxel (PTX) laden hybrid microparticles (PTX-Hyb-MPs) for improved delivery of chemotherapy in ovarian cancer. The PTX-Hyb-MPs are comprised of a lipid-coated shell of poly (lactic acid-co-glycolic acid) (PLGA) encapsulating hydrophobic PTX. A co-axial electrohydrodynamic (CEH) process is used for one-step and scalable production of the PTX-Hyb-MP agent with controlled particles size, uniform size distribution, tunable thickness, and high encapsulation rate (92.17 ± 6.9%). The multi-layered structure of the PTX-Hyb-MPs is verified by transmission electron microscopy and confocal fluorescence microscopy. The effect of lipid coating on the enhancement of particle interactions with cancer cells is studied by flow cytometry and confocal fluorescence microscopy. The anti-cancer effect of the PTX-Hyb-MPs is evaluated in SKOV-3 ovarian cancer cells in vitro and a cancer xenograft model in vivo, in comparison with conventional drug delivery methods. Our studies reveal that the PTX-Hyb-MP agent can be potentially used for locoregional treatment of ovarian cancer and other tissue malignancies with sustained drug release, tunable release profiles, enhanced drug uptake, and reduced systemic toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.