Abstract

Photoinduced hydrogen production is a promising green strategy to store the power from the Sun as chemical energy. One major challenge is to obtain efficient photocatalytic systems without employing noble metals. In this contribution we combine different shape-controlled bipyramidal or nano-sheet anatase TiO2 nanoparticles, preferentially exposing {101} or {001} facets, and MoxC as co-catalyst to realize noble metal-free photocatalysts. The effect of TiO2 morphology on the functional properties and efficiency of the final composite materials in the photocatalytic H2 production is carefully assessed combining powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy, photoluminescence, transient photocurrent and electrochemical impedance spectroscopy. Engineered MoxC/TiO2 interfaces, which exploit the superior reducing ability of the anatase (101) surface, result to be particularly active in the photocatalytic H2 production from ethanol aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.