Abstract

Surface plasmon polariton (SPP) excitation of the coupled light at small contact area of chromium pillars as the interface of metastructured gold funnel layer and silica medium can be enhanced locally in the gold meta-funnel-structured filter. In the present investigation, the filter is comprised of three layers, namely gold meta-funnels, nano-sized chromium pillars, and silica as the substrate. The incoming infrared (IR) waves, coupled with the excited plasmons at the first and second layers, form an excitation, known as deformed plasmon polariton. Asymmetric distribution of localized SPPs takes place owing to the inherent converging plasmonic feature of the gold funnel structure. The formation of reflection peaks with different magnitudes at different incidence angles of the polarized wave in the spectral characteristics makes the structure prominent for filtering the IR waves. Moreover, the gold meta-funnel-structured filter possesses the additional feature of distinguishing the type of polarized incidence wave. It was found that the transmission remains maximum corresponding to the normal incidence of the TE-polarized waves, whereas the TM-polarized waves over the same wavelength range are almost blocked for any value of incidence angle. The existence of transmission peaks corresponding to the TE waves demonstrates another application of this device as metastructured polarizer filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call