Abstract

The emerging field of cultured meat faces several technical hurdles, including the scale-up production of quality muscle and adipose progenitor cells, and the differentiation and bioengineering of these cellular materials into large, meat-like tissue. Here, we present edible, 3D porous gelatin micro-carriers (PoGelat-MCs), as efficient cell expansion scaffolds, as well as modular tissue-engineering building blocks for lab-grown meat. PoGelat-MC culture in spinner flasks, not only facilitated the scalable expansion of porcine skeletal muscle satellite cells and murine myoblasts, but also triggered their spontaneous myogenesis, in the absence of myogenic reagents. Using 3D-printed mold and transglutaminase, we bio-assembled pork muscle micro-tissues into centimeter-scale meatballs, which exhibited similar mechanical property and higher protein content compared to conventional ground pork meatballs. PoGelat-MCs also supported the expansion and differentiation of 3T3L1 murine pre-adipocytes into mature adipose micro-tissues, which could be used as modular assembly unit for engineered fat-containing meat products. Together, our results highlight PoGelat-MCs, in combination with dynamic bioreactors, as a scalable culture system to produce large quantity of highly-viable muscle and fat micro-tissues, which could be further bio-assembled into ground meat analogues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call