Abstract

The majority of cancer patients die of metastasis rather than primary tumors, and most patients may have already completed the cryptic metastatic process at the time of diagnosis, making them intractable for therapeutic intervention. The urokinase-type plasminogen activator (uPA) system is proved to drive cancer metastasis. However, current blocking agents such as uPA inhibitors or antibodies are far from satisfactory due to poor pharmacokinetics and especially have to face multiplex mechanisms of metastasis. Herein, an effective strategy is proposed to develop a uPA-scavenger macrophage (uPAR-MΦ), followed by loading chemotherapeutics with nanoparticles (GEM@PLGA) to confront cancer metastasis. Interestingly, significant elimination of uPA by uPAR-MΦ is demonstrated by transwell analysis on tumor cells in vitro and enzyme-linked immunosorbent assay detection in peripheral blood of mice with metastatic tumors, contributing to significant inhibition of migration of tumor cells and occurrence of metastatic tumor lesions in mice. Moreover, uPAR-MΦ loaded with GEM@PLGA shows a robust antimetastasis effect and significantly prolonged survival in 4T1-tumor-bearing mice models. This work provides a novel living drug platform for realizing a potent treatment strategy to patients suffering from cancer metastasis, which can be further expanded to handle other tumor metastasis markers mediating cancer metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.