Abstract

Diamond-Blackfan anemia is a rare genetic bone marrow failure disorder which is usually caused by mutations in ribosomal protein genes. In the present study, we generated a traceable RPS19-deficient cell model using CRISPR-Cas9 and homology-directed repair to investigate the therapeutic effects of a clinically applicable lentiviral vector at single-cell resolution. We developed a gentle nanostraw delivery platform to edit the RPS19 gene in primary human cord bloodderived CD34+ hematopoietic stem and progenitor cells. The edited cells showed expected impaired erythroid differentiation phenotype, and a specific erythroid progenitor with abnormal cell cycle status accompanied by enrichment of TNFα/NF-κB and p53 signaling pathways was identified by single-cell RNA sequencing analysis. The therapeutic vector could rescue the abnormal erythropoiesis by activating cell cycle-related signaling pathways and promoted red blood cell production. Overall, these results establish nanostraws as a gentle option for CRISPR-Cas9- based gene editing in sensitive primary hematopoietic stem and progenitor cells, and provide support for future clinical investigations of the lentiviral gene therapy strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call