Abstract

Cadaverine, a derivative of l-lysine, has been used as a monomer for the synthesis of bio-based nylon-5,6. This study engineered Halomonas bluephagenesis TD1.0 by blocking the feedback inhibition, overexpressing the key l-lysine synthesis genes, strengthening the l-lysine export system and increasing the supply of oxaloacetate for production of l-lysine in the supernatant and PHB in the cells. Subsequently, cadaverine biosynthetic pathway was constructed in H. campaniensis LC-9 to improve the efficiency of de novo cadaverine biosynthesis which combines l-lysine producing H. bluephagenesis TDL8-68–259 and cadaverine producing H. campaniensis LC-9-ldcC-lysP. When H. campaniensis LC-9-ldcC-lysP was used as a whole cell catalysis for cadaverine production, the conversion efficiency of l-lysine to cadaverine reached 100% in the presence of 0.05% Triton X-100 for cell membrane permeability enhancement, resulting in 118 g L-1 cadaverine formed in the fermentor. Thus, Halomonas spp. have been successfully constructed for l-lysine and cadaverine production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.