Abstract

AbstractEngineered Geopolymer Composites (EGC), also known as Strain-Hardening Geopolymer Composites (SHGC), are considered more environmentally friendly than their cement-based counterpart. This study for the first time presents EGC with an ultra-high compressive strength (i.e., over 150 MPa) and an ultra-high tensile ductility (i.e., over 9%) simultaneously. The blended use of fly ash (FA), ground granulated blast slag (GGBS), silica fume, alkali activator, and ultra-high-molecular-weight polyethylene fibers led to the successful development of “Ultra-high-strength & ductility EGC (UHSD-EGC)”. The UHSD-EGC were characterized with excellent multiple cracking and strain-hardening features. In addition, it was found that microstructures of FA-rich geopolymer matrix were looser than those with lower FA/GGBS ratios. The findings arising from this study provided a sound basis for developing EGC materials with ultra-high mechanical properties for sustainable and resilient infrastructure.KeywordsStrain-Hardening Geopolymer Composite (SHGC)Engineered Geopolymer Composites (EGC)Compressive strengthTensile ductilityMultiple cracking

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.