Abstract

A flowback procedure is presented that uses a wellbore model coupled with thermal and fluid modelling to calculate the bottomhole pressure (BHP) and maximise the safe initial production/drawdown without over-stressing and damaging the fracture system. After obtaining the BHP, it is then possible to determine the fractured reservoir volume, fracture-dominated volume, and matrix contribution. The paper presents a case history validating the model calculations in an unconventional well. Two methods of decline analysis are presented, ‘Conventional’ and ‘Thermodynamic Transient Analysis’ (TTA), and together, these methods provide insights into the fracture system and overall reservoir volumes by recognising and applying the appropriate equation for the proper reservoir flow regime. The early flowback period can be used to determine the frac volume, while later periods will begin showing the increasing amount of matrix contribution. The wellbore flow model and decline analysis calculations are verified by a case history presented in the paper, where this flowback process was utilised on a hydraulically fractured East Texas well. The wellhead pressures (WHPs) in this case study highlight the need to accurately calculate BHPs based on the WHP and rates, due to significant differences between the trends and decline rates of the respective pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call