Abstract

Calcification of autologous pathological vessels and tissue engineering blood vessels (TEBVs) is a thorny problem in clinic. However, there is no effective and noninvasive treatment that is available against the calcification of TEBVs and autologous pathological vessels. Gli1+ cells are progenitors of smooth muscle cells (SMCs) and can differentiate into osteoblast-like cells, leading to vascular calcification. Our results showed that the spatiotemporal distribution of Gli1+ cells in TEBVs was positively correlated with the degree of TEBV calcification. An anticalcification approach was designed consisting of exosomes derived from mesenchymal stem cells delivering lncRNA-ANCR to construct the engineered exosome-Ancr/E7-EXO. The results showed that Ancr/E7-EXO effectively targeted Gli1+ cells, promoting rapid SMC reconstruction and markedly inhibiting Gli1+ cell differentiation into osteoblast-like cells. Moreover, Ancr/E7-EXO significantly inhibited vascular calcification caused by chronic kidney disease. Therefore, Ancr/E7-EXO reprogrammed Gli1+ cells to prevent calcification of vascular graft and autologous pathological vessel, providing unique insights for an effective anticalcification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.