Abstract

Oxaliplatin resistance inevitably occurs in almost all cases of metastatic colorectal cancer (CRC), and it is important to study the roles of lncRNAs and their specific regulatory mechanisms in oxaliplatin resistance. Exosomes are increasingly designed for drug or functional nucleic acid delivery due to their properties, thereby improving the effectiveness of cancer therapy. The results of this study show that the low expression of PGM5 antisense RNA 1 (PGM5-AS1) in colon cancer is induced by transcription inhibitor, GFI1B. PGM5-AS1 prevents proliferation, migration, and acquired oxaliplatin tolerance of colon cancer cells. Exosomes encapsulating oxaliplatin and PGM5-AS1 can reverse drug resistance. For identifying differentially expressed target genes regarding PGM5-AS1, RNA transcriptome sequencing was performed. The mechanism by which PGM5-AS1 regulates its target genes was explored by performing experiments such as fluorescent in situ hybridization assay, dual-luciferase reporter gene assay, and RNA immunoprecipitation. The results show that by recruiting SRSF3, PGM5-AS1 activates alternate splicing to downregulate PAEP expression. For hsa-miR-423-5p, PGM5-AS1 can also act as a sponge to upregulate the NME1 expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.