Abstract

Somatic gene therapy is a promising approach for treating otherwise terminal or debilitating diseases. The human skin is a promising conduit for genetic engineering, as it is the largest and most accessible organ, epidermal autografts and tissue-engineered skin equivalents have been successfully deployed in clinical applications, and skin epidermal stem/progenitor cells for generating such grafts are easy to obtain and expand invitro. Here, we develop skin grafts from mouse and human epidermal progenitors that were engineered by CRISPR-mediated genome editing to controllably release GLP-1 (glucagon-like peptide 1), a critical incretin that regulates blood glucose homeostasis. GLP-1 induction from engineered mouse cells grafted onto immunocompetent hosts increased insulin secretion and reversed high-fat-diet-induced weight gain and insulin resistance. Taken together, these results highlight the clinical potential of developing long-lasting, safe, and versatile gene therapy approaches based on engineering epidermal progenitor cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.