Abstract

RNA domain swapping typically demonstrates conservation of the native function of the domain in a non-native context. In contrast, we employed RNA engineering to demonstrate deviation of G-quadruplex (GQ) function that is contingent upon its context dependent location, which is opposite to their native functional role. Known translation repressing RNA GQs were engineered into human VEGF IRES A replacing the endogenous GQ domain essential for translation. Alternatively, the translation inhibitory GQ motif within the 5′-UTR of MT3-MMP mRNA was replaced with two known GQ motifs that are essential for translation. The results indicate that the engineered GQ domains can adopt GQ structures in a foreign environment with a functional role reversal to accommodate the need of the endogenous swapped motifs. The observations establish the functionality and context dependent modularity of RNA GQ structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call