Abstract

Multiple strains of Staphylococcus are resistant to antibiotics, including the well-known methicillin-resistant Staphylococcus aureus (MRSA). We share an engineered plasmid device in Escherichia coli that lyses the disease-causing pathogen, S. aureus. The device was engineered using BioBrick parts obtained from the International Genetically Engineered Machine foundation (iGEM). The cI-blue-lysostaphin device consists of a temperature-sensitive promoter that is activated under physiological fever temperatures above 35°C that drives expression of a blue chromoprotein reporter and mature truncated lysostaphin enzyme. The functioning cI-blue-lysostaphin device was tested for optimal lysis conditions in MM294 and DH5α E. coli chassis and across incubation temperatures ranging from 30-42°C. We conclude that the lysostaphin activity of the cI-blue-lysostaphin device differs between chassis and increases with greater incubation temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.