Abstract

Owing to their extraordinary thermal and biological stability, cystine-knot miniproteins provide an attractive scaffold for the development of peptide-based diagnostics. One of the major advantages of this scaffold lies in the fact that the disulfide-constrained structural core can be functionalized by decoration with bioactive-loop residues. Methods have been developed to generate miniproteins with prescribed binding characteristics to a broad spectrum of different target proteins. They combine structural, biophysical and functional features that are beneficial for applications in molecular diagnostics in vivo (i.e., high affinity and selectivity, small size, high biological stability and fast renal clearance). Promising candidates for tumor imaging have been generated recently and evaluated in animal models, and more applications are expected in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.