Abstract

Developing highly efficient and stable electrocatalysts for urea electro-oxidation reactions (UORs) will improve wastewater treatment and energy conversion. A low-cost cobalt sulfide-anchored nickel sulfide electrode (CoS/Ni3S2@CP) was synthesized by electrodeposition in DMSO solutions and found to be highly effective and long-lasting. The morphology and composition of catalyst surfaces were examined using comprehensive physicochemical and electrochemical characterization. Specifically, CoS/Ni3S2@CP electrodes require a potential of 1.52 volts for a 50 mA/cm2 current, confirming CoS in the heterointerface CoS/Ni3S2@CP catalyst. Further, the optimized CoS/Ni3S2@CP catalyst shows a decrease of 100 mV in the onset potential (1.32 VRHE) for UORs compared to bare Ni3S2@CP catalysts (1.42 VRHE), demonstrating much greater performance of UORs. As compared to Ni3S2@CP, CoS/Ni3S2@CP exhibits twofold greater UOR efficiency as a result of a larger electroactive surface area. The results obtained indicate that the synthetic CoS/Ni3S2@CP catalyst may be a favorable electrode material for managing urea-rich wastewater and generating H2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.