Abstract
Reducing the level of annihilation of electrons and holes is considered to be a feasible strategy to promote piezocatalytic activities. But this strategy is only achieved through cumbersome sample preparation technologies, hindering its practical applications. Herein, we introduce a simple and efficient technique, the conventional solid-state method, to engineer a composite interfacial electric field to solve this problem, and validate it in a composite piezocatalysis composed of potassium sodium niobate ((K, Na)NbO3, KNN) and multiwalled carbon nanotubes (MWCNTs). The KNN-1CNT sample, a piezocatalyst doped with 1 wt % MWCNTs, shows a degradation rate (k) of 127 × 10-3 min-1 for Rhodamine B (RhB) dye and a hydrogen peroxide (H2O2) production rate of 36 μmol/h, about 27 times more than a reported ferroelectric composite piezocatalyst. The excellent piezocatalytic activities are attributed to the good crystallinity, slightly increased oxygen vacancies, and especially the optimal composite interface electric field. Therefore, our proposed method provides a paradigm for obtaining large-scale perovskite piezocatalysts with high piezocatalytic activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.