Abstract

Pretargeted imaging and radioimmunotherapy approaches are designed to have superior targeting properties over directly targeted antibodies but impose more complex pharmacology, which hinders efforts to optimize the ligands prior to human applications. Human embryonic kidney 293T cells expressing the humanized single-chain variable fragment (scFv) C825 (huC825) with high-affinity for DOTA-haptens (293T-huC825) in a transmembrane-anchored format eliminated the requirement to use other pretargeting reagents and provided a simplified, accelerated assay of radiohapten capture while offering normalized cell surface expression of the molecular target of interest. Using binding assays, ex vivo biodistribution, and in vivo imaging, we demonstrated that radiohaptens based on benzyl-DOTA and a second generation "Proteus" DOTA-platform effectively and specifically engaged membrane-bound huC825, achieving favorable tumor-to-normal tissue uptake ratios in mice. Furthermore, [86Y]Y-DOTA-Bn predicted absorbed dose to critical organs with reasonable accuracy for both [177Lu]Lu-DOTA-Bn and [225Ac]Ac-Pr, which highlights the benefit of a dosimetry-based treatment approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.